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A EM algorithm for Issue Opinion Model Estimation

In this appendix, we describe the EM algorithm (Dempster, Laird, and Rubin, 1977) used

to estimate the parameters of the likelihood function shown in Equation 5. Following the

notation introduced in in the main text and for convenience letting ✓ = (↵↵↵,���,���), we begin

by forming the “complete data” log likelihood,

`(✓) =
X

i

X

t

vit logLt(yyyi·; ✓)

where vit = 1 if the ith respondent is of type t 2 {1, 2, 3} and 0 otherwise. Note that
P

t vit = 1 for all respondents i. In the complete data problem, the type of each respondent

is known and indicated by v. Of course, v is not observable. However, the EM algorithm is

formed by iteratively maximizing the expected value of ` over the unknown values of v given

estimates ✓ and the observed data.

In particular, we form the expectation of ` over v as

Q(✓|✓(s)) =
P

i

P
t Evit|yi·yi·yi·,✓(s) (vit logLt(yyyi·; ✓))

=
P

i

P
t Evit|yi·yi·yi·,✓(s) (vit) logLt(yyyi·; ✓)

=
P

i

P
t wit logLt(yyyi·; ✓)

where

wit =
w̄(s)

t Lt(yyyi·; ✓(s))P
t0 w̄

(s)
t0 Lt0(yyyi·; ✓(s))

and s = 0, 1, 2, . . . indicates the current step of the EM algorithm.

A.1 The EM algorithm

The algorithm proceeds as follows:

1. The step counter, s, is set to zero and start values for ✓(0) and w̄(0)
t for t = 1, 2, 3 are

selected.
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2. E-Step: wit is formed for all i and t given ✓(s) and w̄(s)
t .

3. M-Step: Q is maximized in three parts yielding ✓(s+1) and w̄(s+1)
t for t = 1, 2, 3. These

three parts are as follows:

a. For the parameters describing the issue opinions of respondents of type 1,

X

i

wi1 logL1(yi·;↵↵↵,���)

is maximized to update the estimates of ↵↵↵ and ���.

b. The parameters describing the issue opinion of respondents of type 2 are updated

as weighted means, �(s+1)
j =

P
i2Nj

wi2yij
P

i2Nj
wi2

for j = 1, . . . , J where Nj is the set of

respondents who answered question j.

c. The sample proportions belonging to each type are updated as w̄(s+1)
t =

P
i wit/N

for t = 1, 2, 3.

4. s is incremented and the process repeated from (2) until convergence.

E-step details: As shown above, the calculation of wit, requires the evaluation of L1, L2

and L3. The likelihood of individual i’s issue question responses if he is of type 3, L3(yyyi·),

is simply a function of the number of responses given, does not depend on ✓(s), and is

straightforward to calculate using Equation 2. Similarly, the calculation of the likelihood

of individual i’s issue question responses if she is of type 2, L2(yyyi·,���), requires only the

straight-forward application of Equation 3.

The calculation of the likelihood of individual i’s issue question responses if she is of type

1, L1(yyyi·,↵↵↵,���), is more complicated because it involves the calculation of the integral shown in

Equation 1 as well as an estimate of the distribution of ideal points, f . We approximate f and

the integral using Monte Carlo methods. In particular, we draw a sample from the current

estimated ideal points, ẋk for k = 1, . . . ,M , of size M . The sample is drawn independently
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and with replacement with sampling weights that are proportional to the current weights,

wi1 for i = 1, . . . , N . Because the estimated ideal points are drawn in proportion of the type

1 membership weights, the resulting sample is (approximately) drawn from f . Given this

Monte Carlo draw from f , the integral in Equation 1 is approximated as

L1(yyyi·;↵↵↵,���) ⇡
MX

k=1

Y

j2Ji

⇤ (�j(ẋk � ↵j))
yij (1� ⇤ (�j(ẋk � ↵j)))

1�yij .

M-Step details: As part of the M-step,
P

i wi1 logL1(yi·;↵↵↵,���) is maximized to update the

estimates of ↵↵↵ and ���. These estimates are arrived at using a weighted version of the quadratic

majorization approach of de Leeuw (2011b) where the weights are wi1 for i = 1, . . . , N . Each

ideal point is estimated as a fixed e↵ect. Thus, the distribution of ideal points is estimated

non-parametrically in this approach. This is also equivalent to a weighted version of the

spatial voting model estimation method described in Imai, Lo, and Olmsted (2016).
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B Power Simulations and Data Selection

The datasets that we use in this paper have very large numbers of respondents. However

they have fewer policy questions than we would like, particularly for a model of this level of

complexity. So it is important to assess the power of the model with respect to the number

of items.

In Section B.1 of this appendix, we show two sets of simulations that examine how many

items in a survey are necessary to accurately estimate both respondents’ type and their

spatial ideal points. Overall, this analysis leads us to conclude that about 20 policy items

are necessary to accurately estimate all of the parameters in the model that we present in

the main text.

If an analyst used less than 20 items:

• The respondents’ one-dimensional ideal points would be estimated somewhat less ac-

curately (see the left panels of Figures A1 and A2).

• More problematically, the respondents’ types (Downsian, Conversion, Inattentive) would

be estimated substantially less accurately when there are fewer than 20 items (see the

middle panels of Figures A1 and A2), and estimates of the overall composition of the

sample between these types would be greatly biased (right panels of Figures A1 and

A2). Indeed, the accuracy of the estimated types and the overall composition of the

sample between types increases dramatically at around 20 items.

In section B.2 of this appendix, we examine other features of the policy items that can

increase the accuracy of the model parameters. Here too, we consistently find that the

number of items is the most important predictor of model accuracy.
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B.1 Simulations on e↵ect of the number of policy items on model

accuracy

There is no simple power calculation that will tell us how many items we need to get precise

estimates of our model parameters. In the absence of such a formula we use simulations.

We simulate our model two ways, both using actual data. First, we run the model on an

existing data set, randomly selecting among the available items for each trial. We vary the

number of items from 10 to the full number, in this case 32, conducting three trials for each

number of items. In each trial we estimate the parameters of the model. We compare these

estimates to the estimates we obtain using all 32 items.

Our second simulation method takes the estimated parameters from the full dataset and

uses them to simulate new datasets. On each trial we randomly select a number of items

M, doing this three times for each of M in 10 to 32, as before. Then we simulate a dataset

using the estimated parameters from the full model for those items, and estimate our model

on this simulated dataset. We continue to use the parameters estimated using all 32 items

as our benchmark.

The first method has the advantage that it does not assume that our model is correctly

specified. It simply takes a real dataset and estimates the parameters for various numbers

of items. However this method is susceptible to the possibility that our conclusions will be

a↵ected by the idiosyncrasies of the dataset we choose. The second method assumes that

our model is correctly specified. The data simply provide a set of plausible parameters to

use for the simulations. The conclusions using this method are more generalizable in the

sense that they should capture cases where there is similar heterogeneity in the parameters

and the model is appropriate.

Among the datasets available to us, the 2014 CCES had the greatest number of items

at the time of this simulation analysis.1 The parameters of interest to us are the estimated

type probabilities and ideal points for Downsian types. We want to know when we can make

1We later added the 2015, 2017 and 2018 CCES.
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precise claims about which survey respondents have moderate ideal points, however defined.

And we want to know when we can make precise claims about which respondents are very

likely to be Downsians, as indicated by the size of the associated parameter. We also want

to know how close our average estimates will be for all three parameters that indicate the

fraction of the respondents that are Downsian, Conversian, and inattentive types.

Figure A1 shows the results for the first simulation method. The leftmost panel shows

the correlation between the estimated ideal points in a given trial and the estimated ideal

points using all 32 items on the y-axis. The x-axis is the number of used items in each trial.

We fit a LOESS smoother to this relationship. With only 10 items this correlation hovers

at a little over 0.8 on average but with correlations as low as .74. The relationship is close

to linear. Twenty items are needed to consistently achieve correlations above .9, though of

course more items are better.

The middle panel shows the correlation for the Downsian probabilities, w1, estimated in

each trial and the Downsian probabilities estimated with 32 items. This relationship is much

noisier, but ranges from .5 in expectation with 10 items to very close to 1 with 32.

The last panel shows the averages for each set of probabilities along with a horizontal

line for the averages when 32 item are used. Green indicates w1, blue indicates w2 and red

indicates w3. It is clear from this graph that these estimates are severely biased with only

10 items. w1 and w2 are biased upwards and w3 is biased downwards. We suspect that this

is part of a more general bias towards equality of the three probabilities in small samples.

The bias ranges from almost .25 to close to 0, with the relationship flattening substantially

around 20 items.

Figure A2 shows the results for the second simulation method. Assuming that our model

is correctly specified substantially improves all of the metrics, particularly when few items

are used. The association between the ideal points improves linearly in M from about .83

to about .91. The correlation in the probabilities improves rapidly from about .77 to about

.94, flattening substantially around M=20. For the averages of the probabilities we see a
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Figure A1: Results from Simulation 1

smaller but still substantial bias around M=10, which is mostly eliminated by M=20. In

each case a small discrepancy remains between the benchmark parameters and the estimated

parameters, reflecting a small degree of model misspecification.
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Figure A2: Results from Simulation 2

There is no objective criteria for what threshold of items to use for precise estimation of

these parameters. We consider the estimates using only 10 items to be clearly inadequate.

It is clear from the graphs that greater numbers of items are better, and even greater than

32 would be preferable. However given the data available to us we choose to make do with

datasets of 20 items or more. These estimates retain a small amount of bias against one

of our central conclusions: that a low dimensional model is a good characterization of the
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preferences of most individuals. However they do not contain so much bias as to make type

2 errors very likely.

B.2 Other features of policy items that might improve model ac-

curacy

So far we have only considered the number of items as an indicator of the power of a given

dataset. However there are several other considerations that one might take into account

in assessing power. The informativeness of a given dataset will depend on the unknown

item parameters in complex ways. For instance, items that divide extreme liberals from

moderate liberals are informative with respect to the parameters of those respondents but

may not be very informative with respect to conservative respondents. So the position of

the estimated cut points matter, and so does heterogeneity in these cut points. Items that

are less discriminating will yield noisier estimates as well. In other words, “bad” items lead

to “bad” estimates.

These factors are di�cult to assess a priori. The margin of the survey question may

be used as a rough indicator of where in the spectrum of ideal points the question is likely

to be discriminating. In our case all survey questions are coded in what we believe to

be the “conservative” direction. We can use the standard deviation of the margins as a

measure of the coverage of these items. We evaluate whether the dispersion of the margins

is an important factor in our simulated datasets, leaving a more thorough assessment of this

methodological question to future work.

Table A1 shows the estimates from three models where the dependent variable is the

correlation between the estimated w1s from each simulation and the estimated w1s using

all 32 items from the CCES. These simulations are from our first method, described above.

These models use three explanatory variables: the number of items, the standard deviation

of the margins, and the interaction between those two factors. The number of items explains

about a quarter of the variation in this correlation. However the standard deviation of the
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margins explains little if any variation, and only slightly improves upon a model using only

the number of items.

Table A1: E↵ect of the number of items and standard deviation of the question margins on
the correlation between the estimated w1 and the benchmark w1

Dependent variable:

corrw1

(1) (2) (3)

# of items 0.021⇤⇤⇤ �0.054
(0.004) (0.050)

SD(margins) ⇥ # of items 0.560
(0.371)

SD(margins) 1.832 �6.776
(2.172) (5.865)

Constant 0.204⇤⇤ 0.391 1.112
(0.093) (0.288) (0.786)

Observations 66 66 66
R2 0.265 0.011 0.299
Adjusted R2 0.254 �0.004 0.266

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01

Table A2 shows estimates using the same independent variable, but here the dependent

variable is the correlation between the simulated ideal points and the benchmark ideal points.

This time the number of items explains 86% of the variance in the correlation. The standard

deviation of the margins adds little if any explanatory power.

We take these models as evidence that, at least in this dataset, the number of items is

a much more important factor than having a lot of dispersion in the margins. This may

be because any random sample of the items available is su�ciently dispersed. However for

our purposes we opt for a simple inclusion criterion and use all datasets where respondents

answer at least 20 questions.
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Table A2: E↵ect of the number of items and standard deviation of the question margins on
the correlation between the estimated ideal points and the benchmark ideal points

Dependent variable:

corrx

(1) (2) (3)

# of items 0.009⇤⇤⇤ 0.010⇤⇤

(0.0004) (0.005)

SD(margins) ⇥ # of items �0.013
(0.038)

SD(margins) 0.186 0.286
(0.494) (0.595)

Constant 0.740⇤⇤⇤ 0.890⇤⇤⇤ 0.702⇤⇤⇤

(0.009) (0.066) (0.080)

Observations 66 66 66
R2 0.859 0.002 0.859
Adjusted R2 0.856 �0.013 0.853

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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Table A3 shows the median number of responses to policy items for 11 large-sample

surveys of political views: the 2006-2016 Cooperative Congressional Election Studies and

the 2000 and 2004 National Annenberg Election Surveys. The surveys where the median

respondent answers at least 20 policy questions are the 2012, 2013, 2014, 2015, 2016, 2017

and 2018 Cooperative Congressional Election Studies, the data sets represented in the paper.

Table A3: Number of policy items on large sample surveys

Survey Median Policy Responses
CCES 2006 12
CCES 2007 13
CCES 2008 14
CCES 2009 11
CCES 2010 16
CCES 2011 13
CCES 2012 21
CCES 2013 22
CCES 2014 32
CCES 2015 33
CCES 2016 28
CCES 2017 31
CCES 2018 35
NAES 2000 17
NAES 2004 9
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C Model Validation with the Stanford Module of the

2010 CCES

In this appendix, we show that the example given in Figure 2 of the main text generalizes.

If we compare any two questions out of the 133 question asked on the 2010 CCES module,

respondents classified as Downsian moderates are more likely to give spatially consistent re-

sponses. Downsian moderates become even more likely to give spatially consistent responses

when the magnitude of any inconsistency would be large. Conversians are more likely to

give spatially inconsistent responses and their likelihood of doing so depends less on the

magnitude of the inconsistency. This validation exercise requires no knowledge of our model

to understand.

Consider a 133-by-133 matrix where each row and column represents one of our 133

items. The rows are ordered by support for the liberal alternative such that the top row is

the least popular liberal policy and the bottom row the most popular liberal policy. The

columns are ordered by support for the conservative policy. In this arrangement, the bottom

left of our graph represents item pairs where the liberal alternative is very popular for the

item in the rows and the conservative alternative is very popular for the item in the column.

As we ascend towards the top right of the matrix, the liberal alternative becomes less and

less popular for the row item, and the conservative alternative becomes less and less popular

for the column item.

Without any statistical model, we want to try to capture the proportion of “spatial

errors.” If the items were perfectly Guttman scalable, then the margins would be su�cient.

Consider a pair of items on the bottom left of our matrix, where the row item is R and the

column item is C. Let 1 be a conservative response and 0 be a liberal response. Giving both

liberal responses or both conservative responses will always be spatially consistent. For items

on the bottom left, giving liberal responses to row items, R = 0, and conservative responses

to column items, C = 1, is also spatially consistent, because these responses represent the
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majority of respondents. R = 0 and C = 1 is the moderate response to both questions.

For the row item the conservative response is rare, and therefore relatively extreme, and

for the column item the liberal response is rare, and therefore relatively extreme. So the

response pattern R = 1, C = 0 gives the extreme conservative response on one question

and the extreme liberal response on the other. This is a spatial error that suggests the

respondent giving this answer pair has views not well summarized by a single dimension of

policy ideology.

In the bottom left of the matrix, (R = 0, C = 1) represents a spatially consistent choice

and (R = 1, C = 0) also represents a spatially inconsistent choice. As we move up the rows

and to the left on the columns the margins of the questions get closer. At some point, the

situation flips. Once majorities support the conservative side on the rows and the liberal

side on the columns, then (R = 1, C = 0) represents a spatially consistent choice and

(R = 0, C = 1) represents a spatially inconsistent choice. If these choices were perfectly

Guttman scalable, than we would no longer observe the spatially inconsistent choice. In a

random utility model, errors should become more common as the margins of the question

become closer.

Figure A3 graphs the odds of choosing (R = 1, C = 0) against (R = 0, C = 1) for respon-

dents who are classified as Conversian (left frame) and Downsian (right frame) moderates

by our model. Moderate here indicates someone whose ideal point is in the middle third of

the distribution with higher posterior probability Downsian than Conversian or inattentive.

We focus on moderates to support the claims we make about moderates specifically in the

paper.

Our expectation is that, for subjects whose views are well-explained by a single dimension

of ideology, the odds should should be low on the bottom left, when (R = 1, C = 0) is the

spatially inconsistent choice, and high on the top right, when (R = 1, C = 0) is the spatially

consistent choice. The odds should approach 1:1 in the middle when the most spatially

consistent choice is to respond in the same direction to both questions.
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Figure A3: Odds of Spatially Consistent versus Spatially Inconsistent Choices
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For each pair of 133 issues on the 2010 CCES, the color of each “pixel” represents the odds
of a randomly selected respondent giving the conservative answer to the question indicated
by the pixel’s x-axis position and the liberal answer to the question indicated by the pixel’s
y-axis position from among those respondents giving one conservative and one liberal answer
to that question pair. The questions are ordered by support for the conservative position on
the x-axis and by support for the liberal position on the y-axis.

Under perfect one-dimensional spatial voting, the data would be Guttman scalable. In

that case, these odds would be greater than 1:1 everywhere above the -45 degree line and

less than 1:1 everywhere below the -45 degree line. Notice that for those respondents who

we identify as Downsian moderate this is largely the case. On the other hand, for those

respondents identified as Conversian, there is a great deal of red (odds greater than 1:1)

below the -45 degree line and blue (odds less than 1:1) above the -45 degree line. It is clear

from the graph that Conversians are much less constrained than are Downsian moderates.

This analysis provides descriptive nonparametric evidence that our model successfully

separates ideologically consistent moderates (Downsians) from those whose responses are

much less constrained by the ideological dimension (Conversians).
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D Modeling Spatial Preferences in Two Dimensions

In the model presented in the main text, voters can either hold one-dimensional spatial

preferences (with error) or hold issue opinions that are (across all such voters) independent

across issues (Conversians and inattentives). An alternative approach would be to place all

voters in a higher-dimensional preference space. Indeed, putting aside the small number of

inattentive voters, it can be easily demonstrated that the mixture model that we advance

can be represented as, and is isomorphic to, a standard two-dimensional model in which our

Downsians have ideal points that fall on a single line and the Conversians fall on a single

point that lies away from that line.2 To see this, recall that, in the notation introduced in

the main text, the probability that a Downsian respondent i answers issue question j in the

a�rmative (yij = 1) is

⇤ (�j(xi � ↵j)) .

If we extend this spatial choice function to two dimensions, the probability that yij = 1

becomes

⇤(↵̃j + �̃j1x̃i1 + �̃j2x̃i2).

While adding a second dimension to the usual quadratic spatial preference model increases

the number of x and � parameters that characterize each choice, there is still only one ↵

parameter (Clinton, Jackman, and Rivers, 2004, p. 365). The definition of ↵̃ di↵ers from its

one-dimensional counterpart which is why we place a tilde over it (and the other parameters

in the two-dimensional model). Note that ↵̃j = �↵j�j in the one-dimensional case (in which

�̃j2 = 0 for all j). Now, suppose that the data are generated according to the mixture model

presented in the main text. We can represent the choice probabilities of Downsians in that

model by setting ↵̃j = �↵j�j, �̃j1 = �j, x̃i1 = xi, and x̃i2 = 0 for all (Downsian) respondents

2We thank Ben Lauderdale for first pointing this out to us.
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i and issue questions j because then

⇤(↵̃j + �̃j1xi + �̃j2 · 0)

equals

⇤ (�j(xi � ↵j)) .

Holding fixed these values of ↵̃ and �̃j1, we can accommodate the Conversian voters by

setting their x̃i1 = 0 and their x̃i2 = 1 and choosing �̃j2 to solve

�j = ⇤(↵̃j + �j · 0 + �̃j2 · 1)

for all (Conversian) i and j. Rearranging we have

⇤�1(�j) = ↵̃j + �̃j2 · 1

or

�̃j2 = ⇤�1(�j)� ↵̃j.

Adding the inattentive voter type to the mix breaks the isomorphism of the two models, but

given that few respondents of this type are estimated to exist in the data, the two models

are close to isomorphic in this application.3 Because spatial models in two dimensions are

invariant to translations, dilations, reflections, and rotations of the ideal point space (see

Clinton, Jackman, and Rivers, 2004, p. 365–366), there is a continuum of ways in which the

model presented in the main text (leaving out the inattentives) can be made isomorphic to a

(restricted) two-dimensional spatial model. However, all of these isomorphic two-dimensional

models have the Downsians falling on a single line through the two-dimensional space and

3Adding a third spatial dimension would be su�cient to recreate the isomorphism with inattentives included.
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the Conversians falling on a point that does not (in general) lie on that line.4

In this Appendix, we allow for the possibility that (some) voters have two-dimensional

spatial preferences. We focus this exploration on the same 133-question dataset drawn from

the 2010 CCES that we employ in Appendix C, the 2010 CCES module dataset. The large

number of issue items found in this dataset relative to the other datasets presented in the text

gives us the best opportunity to explore preferences in more than one dimension. We also

present estimates of the out-of-sample fit of various alternative preference models considered

for all of the datasets analyzed in the text.

We first apply a standard two-dimensional IRT-like model (Clinton, Jackman, and Rivers,

2004) to the 2010 CCES module dataset. Panel (a) of Figure A4 plots the resulting estimated

ideal points. The points are colored according to the estimated probability that a respondent

is a Downsian as estimated by the mixture model employed in the text. This plot does not

reveal a single line of Downsians and a single point of Conversians that falls away from

that line. However, the deviation from that pattern is perhaps less stark than it might

appear. First, we see that the Conversians are concentrated in a small area of the graph.

Second, because there is a stochastic component to the voters’ preferences and because their

locations are determined by no more than 133 questions (91.9 on average), each ideal point

is estimated with error. Therefore, even if the true ideal points all fell on a single line in the

space, we would expect the estimates to form a cloud around that line. To demonstrate this,

Panel (b) of Figure A4 shows the estimated results when the same two-dimensional spatial

model is applied to a simulated data set produced according to our mixture model calibrated

to the CCES 2010 module data. Here we see that despite the mixture model holding exactly

in the data, the Conversians are clustered, but do not fall on a single point nor do the

4If, in the parameterization presented, ⇤�1(�j) = ↵̃j for all j then �̃j2 = 0 for all j and Conversians would
be located at x̃i = (0, 0) which is a point on the line containing the Downsians. Of course, in this case
Conversians cannot be empirically distinguished from Downsians because their choice probabilities would
be identical to those of Downsians for whom xi = 0. Note that in this knife-edged case where there is only
one-dimension of choice, the values of �̃j2 and x̃i2 are not separately identified because �̃j2 = 0 for all j
with x̃i2 2 (�1,1) for all i and x̃i2 = 0 for all i with �̃j2 2 (�1,1) for all j yield equivalent choice
probabilities.
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Figure A4: Estimating respondent preferences in two spatial dimensions. Panel (a) shows
the locations of 2010 CCES module respondents as estimated by a standard two-dimensional
spatial model. The points are shaded to reflect the probability that each respondent is of the
Downsian type as estimated by the model presented in the main text. Panel (b) shows the
same plot based on simulated data that is calibrated to the 2010 CCES module dataset under
the assumptions of the model presented in the main text.

estimated locations of the Downsians fall on a single line. The general pattern shown in the

two panels is similar though the locations of the Conversians is more strongly di↵erentiated

in the simulated data and there appears to be more structure to the second dimension in the

empirical data. Given that there is no second dimension of spatial preference in the simulated

data, this is not surprising. Though there is apparent structure in the second dimension of the

empirical data, the first and second dimension locations are far from independent calling into

question the degree to which there is an important distinct second dimension of preference

manifest in the issue question responses.

Indeed, the empirical estimates reveal the horseshoe pattern often found when two-

dimensional scaling models are applied in situations in which a single underlying dimension

is expected (see Diaconis, Goel, and Holmes, 2008). In such cases, the recovered second

dimension can be accounting for some misspecification of the functional form of the stochas-

tic spatial preference, choice or distance function rather than a distinct second dimension

(for example, in our context, distinct “economic” and “social” policy preference dimensions)
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(Kendall, 1970; Shepard, 1974; Hill and Gauch, 1980; Diaconis, Goel, and Holmes, 2008; de

Leeuw, 2011a).

Because there may be a distinct second dimension of spatial preference or the assumed

functional form of the one-dimensional spatial preference model may be driving our results,

we next consider how the inclusion of a second dimension into the mixture model a↵ects our

estimates of the fraction of Downsians and Conversians in the population. To do this, we

fit an extended version of our mixture model to the CCES 2010 module dataset that allows

the Downsians to have preferences over two spatial dimensions.
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Figure A5: Estimated probabilities of each respondent being of the Downsian type.

For each respondent in the 2010 CCES module data, the x-axis shows the probability
that a given respondent is of the Downsian type when one-dimensional spatial preferences
are assumed. The y-axis shows the probability that a given respondent is of the Downsian
type when two-dimensional spatial preferences are assumed. The quadrants partition
respondents predicted to be Downsian from those predicted to be non-Downsian in either
model or both. The numbers indicate the percentage of the sample that is estimated to
fall into each quadrant. For example, 76 percent of the sample is estimated to be of the
Downsian type in both one and two dimensions, while one percent of the sample is estimated
to be Downsian when one spatial dimension is assumed, but non-Downsian when two spatial
dimensions are assumed.

Figure A5 shows the estimated probability of being a Downsian for each survey re-

spondent under the one-dimensional and two-dimensional mixture models. The four quad-

rants of the plot contain voters who are estimated to be (moving clockwise from the upper
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left): Downsian in the two-dimensional model, but Conversian in the one-dimensional model;

Downsian in both models; Downsian in the one-dimensional model and Conversian in the

two-dimensional model; and Conversian in both models. Whereas the one-dimensional model

estimates about 23 percent of the sample to be Conversian, the two-dimensional model places

only 9 percent of the sample in that category. Fifteen percent of the sample moves from

Conversian to Downsian when a second dimension is available whereas only one percent

moves from Downsian to Conversian. As noted in the main text, this suggests that some of

the voters identified as Conversian moderates in the main text may hold preferences that,

while not easily reconciled with a single spatial dimension, can be made reconcilable with

spatial preferences when a second spatial dimension is added. Thus, our characterization of

the fraction of “moderates” who actually have spatial preferences is perhaps understated.

Another related question is whether the addition of a second spatial dimension substan-

tially improves the fidelity of the model with the data. To answer that question, we need a

measure of (out of sample) fit. Table A4 reports the in-sample log likelihood as well as the

out-of-sample perplexity associated with each model when applied to the 2010 CCES module

dataset. The out-of-sample perplexity is approximated via a five-fold cross validation. Un-

der the “null” model, across the entire sample, preferences are assumed to be independent

across choices (in e↵ect, all voters are assumed to be Conversians). The “1-D (mix.)” is

the model presented in the main text that considers a mixture of Downsian, Conversian,

and inattentive respondents. The “2-D (no mix.)” is the standard two-dimensional model

used to produce the estimates in Figure A4. It does not include Conversian and inattentive

types. The “2-D (Mix.)” is a version of the model used in the main text in which Downsians

are given preferences over two spatial dimensions rather than one, and includes Conversian

and inattentive types. Given the large number of data points (1,300 respondents answering

on average 91.9 issue questions), it is not surprising that the di↵erences between each pair

of log likelihoods are statistically significant (p values not shown). That is, a statistically

significant increase in data fit is a↵orded by each increase in model complexity.
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Model Log-likelihood Perplexity

Null -72675 1.84
1-D (mix.) -53049 1.58
2-D (no mix.) -51978 1.57
2-D (mix.) -51383 1.56

Table A4: Model log likelihood and perplexity, 2010 CCES module dataset. Shows the
estimated model log likelihoods and estimated average (per item) perplexities across four
possible models of preference. Each model is fit to the same 1,300 respondents answering an
average of 91.9 issue questions). Each row of the table presents the estimated fit for a given
model. The rows are organized in increasing order of model complexity. The log likelihood is
estimated in sample. Perplexity is estimated out of sample using five-fold cross validation.
The di↵erences in log likelihood are highly statistically significant though the reductions in
perplexity as model complexity increases are modest (except when comparing the null model
to the others). Each model is described in the text.

However, the perplexity di↵erences among the various spatial models are modest partic-

ularly in comparison to the null model. Perplexity can be understood as the average number

of bits per issue item required to compactly represent the responses of a single respondent.

The higher the likelihood the model assigns to each observed pattern of the data the lower

the perplexity (the perplexity is the average of the inverse of the geometric mean probability

of the responses given by each respondent). If every respondent were an inattentive type,

perplexity would be 2, which is the theoretical maximum (the maximally entropic data gen-

erating process). On the other hand, if every respondent expressed one of only two patterns

across items, the perplexity would approach 0 (1 over the number of items) because a single

bit would be su�cient to label the two observed patterns. As with the log likelihood, the

value of perplexity is a function of both the nature of the data and the fidelity of the model.

Because the perplexity is calculated using cross-validation, the observed reduction in the

estimated perplexity as model complexity increases is not a mechanical result.

In fact, only small improvements in model fit result from the addition of a second spatial

dimension. The inclusion of the Conversian and inattentive types appears to increase the

fit of the two-dimensional model. However, the di↵erences in fit among the various models

that include a spatial component are very small (less than 1 percent di↵erences in perplexity
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Log likelihood Perplexity

2-D 2-D

Survey Avg.
no. of
items

Null 1-D Mix. No mix. Mix. Null 1-D Mix. No mix. Mix.

2012 18.6 -661043 -550889 -551832 -550929 1.93 1.74 1.75 1.74
2013 21.8 -226870 -194338 -193809 -193867 1.89 1.74 1.74 1.74
2014 31.6 -1156518 -960685 -956933 -949695 1.92 1.74 1.73 1.72
2015 32.5 -292295 -230744 -227953 -226884 1.89 1.66 1.66 1.65
2016 28.8 -1137878 -972217 -973954 -971166 1.86 1.71 1.71 1.71

2017 30.9 -358915 -269839 -269580 -267369 1.90 1.64 1.64 1.63
2018 33.1 -1274454 -973250 -975855 -968311 1.91 1.66 1.67 1.66

Table A5: Model log likelihood and perplexity, 2012–2018 CCES datasets. Shows the esti-
mated model log likelihoods and estimated average (per item) perplexities across four possible
models of issue preference. Each model is fit to the same respondents to each survey. The
average number of responses to each survey is given in the table. Each row of the table
presents estimated model fits for a given survey. The di↵erences in log likelihood are sta-
tistically significant across the models for each survey though the reductions in perplexity
as model complexity increases are very small (except when comparing the null model to the
others). Each model is described in the text.

per issue item). Table A5 shows the log likelihoods and perplexities associated with the

Null, 1-D (with mixture), 2-D (without mixture), and 2-D (with mixture) models described

above when applied to the CCES datasets from 2012 to 2018 analyzed in the text. As

with the 2010 CCES module dataset, adding model complexity increases fit in a statistically

significant way (the log likelihoods di↵er by more than chance would allow). However the

degree of additional (out of sample) fit is minimal (often zero to two decimal places).

E Additional Results on Selection and Accountability

Table 4 in the text assessed the extent to which the voting behavior of di↵erent types of

individuals responds to candidate ideology and experience. To assess the extent to which

each group contributes to election results, we utilized a trichotomous dependent variable that

takes a value of 1 if the respondent voted for the Democratic candidate, 0 if the respondent
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voted for the Republican candidate, and 0.5 if the respondent abstained or voted for a

third-party candidate.

For readers interested in the extent to which those previous results were explained by

voter turnout versus vote choice, we replicate those analyses but utilize alternative dependent

variables. Table A6 excludes those who abstained or supported a third-party candidate and

utilizes a binary dependent variable indicating support for the Democratic candidate. This

analysis su↵ers from the potential concern that the independent variables of interest could

a↵ect turnout, which could induce bias. However, if we assume that candidate ideology and

experience do not influence turnout, we can interpret these results as the di↵erential e↵ects

of ideology and experience for those who voted.

If anything, the interactive coe�cients in Table A6 are greater than those in Table 4.

In other words, if we condition on those who voted, moderate, Conversian, and inattentive

individuals are even more likely than liberals and conservatives to change their partisan vote

choices in response to candidate ideology and experience. Of course, moderate, Conversian,

and especially inattentive individuals are less likely to vote than liberal and conservative

individuals, so these estimates overstate the extent to which these groups contribute to

election results. But these results show that among those who vote, the non-ideologues are

especially likely to contribute to electoral selection and accountability.

Additionally, Table A7 shows the same analyses but utilizes abstention as the dependent

variable of interest. Consistent with our previous results, we find that moderate, Conversian,

and inattentive individuals are more likely to abstain than liberals and conservatives.

The first three columns show that the extent to which these groups di↵erentially ab-

stain does not meaningfully vary as the ideologies of the candidates shift from favoring the

Republican candidate to favoring the Democratic candidate.

However, we do find that the participation di↵erences do vary across candidate expe-

rience in ways that we might expect. As the experience gap between the Democratic and

Republican candidate increases, conservatives become much more likely to abstain relative
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Table A6: Excluding Abstainers

DV = House Vote (Dem = 1, Rep = 0)
X = Ideological Midpoint X = Incumbency X = Experience
(1) (2) (3) (4) (5) (6) (7) (8) (9)

X*Moderate .107 .102 .101 .219 .214 .210 .225 .221 .215
(.021) (.020) (.020) (.013) (.013) (.013) (.013) (.013) (.013)

X*Conversian .157 .146 .150 .253 .242 .233 .257 .248 .237
(.024) (.024) (.024) (.015) (.015) (.015) (.016) (.016) (.015)

X*Inattentive .106 .096 .098 .250 .229 .221 .251 .228 .219
(.051) (.046) (.046) (.031) (.029) (.029) (.031) (.029) (.029)

X*Conservative .011 .007 .010 .001 .014 .016 .002 .018 .017
(.012) (.013) (.014) (.008) (.010) (.011) (.009) (.010) (.011)

X .042 -.012 .066 -.039 .065 -.059
(.009) (.012) (.005) (.013) (.005) (.012)

Moderate -.492 -.480 -.479 -.513 -.505 -.498 -.523 -.515 -.506
(.011) (.011) (.011) (.008) (.008) (.008) (.008) (.008) (.008)

Conversian -.460 -.448 -.451 -.474 -.467 -.462 -.484 -.477 -.471
(.014) (.014) (.014) (.010) (.009) (.009) (.010) (.010) (.010)

Inattentive -.520 -.509 -.511 -.558 -.549 -.543 -.563 -.553 -.547
(.029) (.026) (.026) (.019) (.018) (.018) (.019) (.018) (.018)

Conservative -.917 -.894 -.892 -.890 -.878 -.866 -.891 -.879 -.866
(.006) (.007) (.007) (.005) (.005) (.006) (.005) (.006) (.006)

Year FEs 3 3 3 3 3 3
District FEs 3 3 3
District-Year FEs 3 3 3
Observations 102,350 102,350 102,350 143,715 143,715 143,715 143,715 143,715 143,715
District-clustered standard errors in parentheses. Liberals are the omitted category.

to liberals, and moderates, Conversians, and inattentive individuals are somewhere in be-

tween. In other words, an experience advantage for the Republican (Democratic) candidate

motivates conservative (liberal) individuals to participate relative to liberal (conservative)

individuals. Interestingly, the estimated di↵erences between conservatives and moderates

are greater than those between liberals and moderates. One potential explanation is that

conservative abstention is more responsive to candidate experience than liberal abstention

or that moderate abstention more closely matches that of liberals.

Table A8 replicates the analyses in Table 4 but adds in controls for party identification.

Specifically, all regressions include fixed e↵ects for each possible category of the seven-point

party identification scale. On one hand, these controls might increase precision since party

identifcation is strongly correlated with vote choice. On the other hand, controlling for party

identification could induce bias because the ideology and experiences of congressional candi-
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Table A7: Analyzing Abstention

DV = House Abstention (Abstain/Other = 1, Dem/Rep = 0)
X = Ideological Midpoint X = Incumbency X = Experience
(1) (2) (3) (4) (5) (6) (7) (8) (9)

X*Moderate -.026 -.033 -.033 .028 .030 .031 .031 .035 .035
(.016) (.016) (.016) (.012) (.012) (.012) (.012) (.012) (.012)

X*Conversian -.011 -.014 -.010 .040 .042 .038 .041 .044 .043
(.020) (.019) (.019) (.012) (.012) (.012) (.013) (.012) (.012)

X*Inattentive -.009 -.025 -.019 .044 .042 .039 .071 .069 .068
(.029) (.029) (.029) (.019) (.019) (.019) (.020) (.020) (.020)

X*Conservative -.008 -.015 -.014 .118 .133 .129 .125 .144 .140
(.017) (.017) (.017) (.016) (.015) (.015) (.016) (.016) (.016)

X .036 .017 -.051 -.056 -.060 -.065
(.014) (.015) (.011) (.016) (.012) (.017)

Moderate .242 .236 .234 .205 .196 .194 .203 .193 .191
(.009) (.009) (.009) (.008) (.008) (.008) (.008) (.008) (.008)

Conversian .263 .250 .243 .225 .208 .204 .223 .205 .201
(.011) (.010) (.010) (.008) (.008) (.008) (.009) (.009) (.009)

Inattentive .353 .345 .341 .319 .302 .300 .304 .287 .284
(.017) (.017) (.018) (.013) (.013) (.013) (.014) (.014) (.014)

Conservative -.049 -.056 -.055 -.096 -.107 -.104 -.103 -.116 -.113
(.009) (.009) (.009) (.008) (.008) (.008) (.009) (.008) (.008)

Year FEs 3 3 3 3 3 3
District FEs 3 3 3
District-Year FEs 3 3 3
Observations 159,006 159,006 159,006 233,445 233,445 233,445 233,445 233,445 233,445
District-clustered standard errors in parentheses. Liberals are the omitted category.

dates could potentially influence the reported party identification of respondents. Because of

this potential bias, we believe analyses that exclude partisanship controls are more reliable.

When we control for party identification, the estimated interactive e↵ects of interest in

Table A8 are similar to those in Table 4 although slightly attenuated. This could follow

from the relative appeal of Democratic and Republican congressional candidates a↵ecting

reports of party identification. Nevertheless, even when we control for party, the results are

qualitatively similar.

We might also want to know how the ideological types we identify interact with party

identification. Because party identification is strongly correlated with vote choice, we would

expect, for example, liberal Democrats to behave di↵erently than liberal independents. To

assess this possibility, we coded indicators for every potential combination of our ideological

types (liberal, moderate, conservative, Conversian, and inattentive) and three-point party
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Table A8: Controlling for Party ID

DV = House Vote (Dem = 1, Rep = 0, Abstain/Other = .5)
X = Ideological Midpoint X = Incumbency X = Experience
(1) (2) (3) (4) (5) (6) (7) (8) (9)

X*Moderate .036 .037 .039 .044 .046 .045 .043 .045 .044
(.010) (.010) (.010) (.007) (.007) (.007) (.007) (.007) (.007)

X*Conversian .040 .043 .046 .048 .049 .046 .044 .045 .042
(.012) (.012) (.011) (.007) (.007) (.007) (.008) (.008) (.008)

X*Inattentive .015 .016 .018 .022 .020 .013 .016 .014 .005
(.017) (.017) (.017) (.012) (.012) (.012) (.012) (.012) (.012)

X*Conservative .024 .024 .026 .015 .018 .017 .007 .010 .009
(.013) (.013) (.014) (.011) (.011) (.012) (.012) (.012) (.012)

X .017 -.007 .057 .015 .061 .005
(.008) (.008) (.007) (.010) (.007) (.010)

Moderate -.188 -.185 -.186 -.183 -.181 -.180 -.183 -.181 -.180
(.006) (.006) (.006) (.005) (.005) (.005) (.005) (.005) (.005)

Conversian -.176 -.173 -.176 -.168 -.165 -.166 -.167 -.164 -.165
(.007) (.007) (.006) (.005) (.005) (.005) (.005) (.005) (.005)

Inattentive -.184 -.180 -.183 -.180 -.177 -.176 -.178 -.174 -.172
(.010) (.009) (.009) (.008) (.008) (.008) (.008) (.008) (.008)

Conservative -.371 -.367 -.368 -.350 -.348 -.348 -.347 -.345 -.345
(.007) (.007) (.007) (.006) (.006) (.006) (.007) (.007) (.007)

Year FEs 3 3 3 3 3 3
District FEs 3 3 3
District-Year FEs 3 3 3
Party ID FEs 3 3 3 3 3 3 3 3 3
Observations 152,616 152,616 152,616 224,047 224,047 224,047 224,047 224,047 224,047
District-clustered standard errors in parentheses. Liberals are the omitted category.

identification (Democrat, independent, and Republican). We then replicated the methodol-

ogy used in Table 4 but separately examined each of these categories. The results of this

analysis are in Table A9.

As expected, both our ideological classifications and party identification are important

for explaining voting behavior and the contributions of di↵erent voters to selection and ac-

countability, and there are interesting interactions between ideology and party identification.

Among liberals, Republicans (a very small share of liberals) are more responsive to candi-

date ideology and experience than Democrats. Conversely, among conservatives, Democrats

are more responsive than Republicans. Similarly, among Democrats, conservatives are more

responsive than liberals, and among Republicans, liberals are more responsive than conser-

vatives. These results are consistent with the possibility that party identification is another

proxy for ideology. For example, liberal Republicans are likely more ideologically moderate
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than liberal Democrats, and since more ideologically moderate individuals are likely more

responsive to candidate ideology and experience, we find that the former group is more

responsive.

Interestingly, among moderates, independents are not necessarily more responsive to

candidate ideology and experience than partisans. Moderate Democrats and moderate Re-

publicans are among the most responsive groups. Similarly, Conversian Republicans are also

very responsive to candidate ideology and experience.

The results in Table A9 suggest that if you want to understand the extent to which di↵er-

ent people contribute to electoral selection and accountability, their ideological classification

are more informative than their party identification. To be sure, independents are generally

more responsive than partisans, but moderates and Conversians are much more responsive

than liberals and conservatives. Furthermore, moderate and Conversian partisans appear to

be more responsive than independent liberals and conservatives.
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Table A9: Ideological Type by Party Identification

DV = House Vote (Dem = 1, Rep = 0, Abstain/Other = .5)
X = Ideological Midpoint X = Incumbency X = Experience
(1) (2) (3) (4) (5) (6) (7) (8) (9)

X*Liberal Independent .013 .012 .014 -.004 -.002 -.000 -.001 .001 .002
(.013) (.013) (.013) (.009) (.009) (.009) (.009) (.009) (.009)

X*Liberal Republican .030 .030 .021 .084 .090 .082 .105 .108 .096
(.046) (.045) (.048) (.036) (.036) (.036) (.037) (.037) (.037)

X*Moderate Democrat .048 .051 .055 .052 .051 .052 .055 .056 .057
(.015) (.015) (.015) (.010) (.010) (.009) (.009) (.009) (.009)

X*Moderate Independent .029 .028 .029 .024 .028 .026 .020 .023 .021
(.013) (.013) (.013) (.009) (.009) (.010) (.010) (.010) (.010)

X*Moderate Republican .051 .051 .051 .059 .066 .065 .058 .065 .064
(.020) (.020) (.020) (.014) (.014) (.014) (.014) (.014) (.014)

X*Conservative Democrat .062 .067 .069 .043 .046 .040 .066 .070 .067
(.070) (.065) (.066) (.035) (.034) (.034) (.035) (.034) (.033)

X*Conservative Independent .046 .045 .045 .027 .029 .027 .025 .026 .023
(.018) (.018) (.019) (.014) (.014) (.014) (.014) (.014) (.014)

X*Conservative Republican .017 .016 .020 .008 .014 .015 -.000 .006 .007
(.015) (.015) (.016) (.012) (.013) (.013) (.013) (.013) (.013)

X*Conversian Democrat .020 .021 .020 .038 .038 .034 .040 .039 .035
(.016) (.015) (.015) (.010) (.009) (.009) (.010) (.010) (.010)

X*Conversian Independent .063 .062 .065 .040 .040 .037 .035 .035 .033
(.018) (.017) (.017) (.010) (.010) (.010) (.010) (.010) (.010)

X*Conversian Republican .071 .075 .084 .070 .076 .075 .064 .072 .071
(.020) (.020) (.020) (.015) (.015) (.016) (.015) (.016) (.016)

X*Inattentive Democrat .007 .014 .023 .017 .016 .008 .013 .010 .001
(.031) (.030) (.030) (.019) (.019) (.019) (.020) (.019) (.019)

X*Inattentive Independent .061 .056 .050 .019 .019 .010 .007 .007 -.004
(.022) (.022) (.021) (.015) (.015) (.015) (.015) (.015) (.015)

X*Inattentive Conservative .003 .000 .007 .052 .050 .046 .054 .053 .048
(.038) (.037) (.037) (.025) (.025) (.025) (.026) (.026) (.026)

X .013 -.011 .060 .013 .061 .003
(.009) (.010) (.007) (.011) (.007) (.011)

Liberal Independent -.096 -.094 -.095 -.081 -.084 -.084 -.083 -.085 -.085
(.008) (.008) (.008) (.007) (.006) (.006) (.007) (.007) (.007)

Liberal Republican -.340 -.334 -.328 -.355 -.353 -.350 -.366 -.363 -.358
(.028) (.028) (.029) (.023) (.023) (.023) (.025) (.024) (.025)

Moderate Democrat -.185 -.183 -.185 -.182 -.179 -.178 -.185 -.182 -.182
(.009) (.009) (.009) (.007) (.007) (.006) (.007) (.007) (.006)

Moderate Independent -.384 -.378 -.378 -.354 -.353 -.352 -.352 -.351 -.350
(.008) (.008) (.008) (.007) (.007) (.007) (.007) (.007) (.007)

Moderate Republican -.640 -.632 -.630 -.599 -.598 -.596 -.601 -.599 -.596
(.011) (.011) (.011) (.009) (.009) (.008) (.009) (.009) (.009)

Conservative Democrat -.455 -.448 -.450 -.420 -.417 -.411 -.431 -.428 -.424
(.032) (.031) (.031) (.023) (.022) (.021) (.023) (.022) (.022)

Conservative Independent -.724 -.717 -.716 -.666 -.665 -.664 -.667 -.664 -.663
(.010) (.010) (.010) (.008) (.008) (.008) (.009) (.009) (.009)

Conservative Republican -.771 -.762 -.763 -.720 -.718 -.717 -.717 -.715 -.714
(.009) (.009) (.009) (.008) (.008) (.008) (.008) (.009) (.009)

Conversian Democrat -.160 -.158 -.159 -.159 -.157 -.157 -.161 -.158 -.158
(.010) (.010) (.010) (.007) (.007) (.007) (.007) (.007) (.007)

Conversian Independent -.375 -.369 -.371 -.339 -.337 -.336 -.338 -.335 -.335
(.009) (.009) (.009) (.007) (.007) (.007) (.007) (.007) (.007)

Conversian Republican -.630 -.623 -.627 -.580 -.578 -.578 -.580 -.579 -.578
(.011) (.011) (.011) (.009) (.009) (.009) (.009) (.010) (.010)

Inattentive Democrat -.201 -.201 -.205 -.201 -.200 -.200 -.200 -.197 -.196
(.020) (.019) (.019) (.014) (.014) (.014) (.015) (.015) (.014)

Inattentive Independent -.402 -.393 -.391 -.361 -.358 -.356 -.356 -.353 -.349
(.012) (.012) (.012) (.010) (.010) (.010) (.010) (.010) (.010)

Inattentive Conservative -.584 -.574 -.579 -.557 -.551 -.551 -.559 -.553 -.553
(.019) (.019) (.019) (.014) (.014) (.014) (.014) (.015) (.015)

Year FEs 3 3 3 3 3 3
District FEs 3 3 3
District-Year FEs 3 3 3
Observations 159,006 159,006 159,006 233,445 233,445 233,445 233,445 233,445 233,445
District-clustered standard errors in parentheses. Liberal Democrats are the omitted category.
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F Demographics of Ideological Types

In this section, we assess the descriptive characteristics of the di↵erent types of respondents

we identify. Figure A6 shows the same kinds of analyses utilized in Figure 6 in the text but

for various demographic and social characteristics of interest.

Figure A6: Demographics across Types

The figure shows kernel regressions (bandwidth = .1) of demographic characteristics across
estimated ideologies for Downsians (black), Conversians (dark gray), and inattentive (light
gray) respondents in the 2016 CCES.

Generally speaking, liberals and conservatives are more likely to be white, male, older,

college educated and high income than Downsian moderates, Conversians, and inattentive

respondents are. Also as expected, conservatives are more likely to attend church, while

liberals are especially more likely to be young or have a college degree.
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Focusing on non-ideologues with moderate estimated ideologies, Downsian moderates

are more likely to be white, more likely to be high income, and less likely to attend church.

Inattentive respondents are more likely than other groups to be Black or young.

Although demographics are correlated with our classifications, demographics would not

necessarily allow one to accurately predict a respondent’s type. For example, among our

2016 respondents, approximately 2.8 percent of those who are 30 years of age or older are

classified as inattentive, while approximately 8.1 percent of those under 30 are classified as

inattentive. So young people are much more likely to be inattentive, but only a small minority

of young voters are inattentive. For these reasons, we would caution against researchers

utilizing demographics as a proxy for whether survey respondents are Downsian, Conversian,

or inattentive, as this would likely result in many misclassifications.

G Stability of Estimates

In this section we assess the stability of our estimates using data from the 2010-2014 Coop-

erative Congressional Election Panel Study (Scha↵ner and Ansolabehere, 2015). This data

includes panel re-interviews for 9,500 respondents in the 2010, 2012, and 2014 waves of the

Cooperative Congressional Election Studies. These respondents were asked the same ques-

tions as the respondents in our main results. We re-estimated our model for each of these

three waves separately, and compared the estimates for each of these groups.

We are interested in the degree to which respondents retain the same “type” from wave

to wave, particularly the degree to which respondents who are estimated to be Downsians in

one wave are also classified as Downsians in other waves. Although we don’t have a strong

prediction for how often respondents should change types, we take stability as evidence of for

the validity of the measurement. We are also interested in the degree to which respondent

ideal points are stable. In particular, if our types are meaningful then the ideal points of

Downsians should be more stable than the ideal points of non-Downsians.
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Table A10 shows the percentage of respondents who are classified as Downsian or non-

Downsian in 2010 and 2012. It shows that 82% of respondents are classified as Downsians

in both years; and 94% of respondents classified as Downsian in 2010 are still classified

as Downsian in 2012. Table A11 shows the same numbers for 2012 and 2014: 84% of

respondents are classified as Downsian in both years, and among Downsians in 2012, 93%

are still classified as Downsians in 2014. Our estimates across these years appear to be quite

consistent when it comes to respondents classified as Downsians.

Table A10: Percent of respondents classified as Downsian in 2010 and 2012

Downsian in 2012 Not Downsian in 2012
Downsian in 2010 82.2% 8.3%
Not Downsian in 2010 5.2% 4.3%

Table A11: Percent of respondents classified as Downsian in 2012 and 2014

Downsian in 2014 Not Downsian in 2014
Downsian in 2012 84.4% 6.1%
Not Downsian in 2012 4.2% 5.3%

Figure A7 plots the estimated ideal points of non-Downsians and Downsians in 2012

and 2014. For non-Downsians, the correlation across these two time periods is 0.62. For

Downsians, the correlation is 0.86. Doubtless some of this has to with the range of estimated

ideal points, which is very compressed for non-Downsians. However the high degree of

stability of the estimated ideal points of Downsians across two years is reassuring evidence

that Downsians have meaningful policy views.
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Figure A7: Stability of Estimated Ideal Points
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